dijous, 10 d’abril del 2014

’2052′: integrando límites en un “mundo lleno” (2)






Como comentábamos en el post anterior ’2052′: integrando límites en un “mundo lleno”, la ciencia económica convencional ha ignorado durante los siglos XIX y XX el tema de los límites. Más exactamente, no los ha ignorado sino que ha asumido que estos límites no eran significativos, y de existir, podían ser superados por otros factores, típicamente la tecnología. Esta hipótesis, progresivamente asumida hace unos 150-200 años, y entonces justificable y por tanto correcta (la hipótesis del “mundo vacío”), ha dejado sin embargo de ser válida en nuestros días.
Y es que en cualquier ciencia aparecen problemas cuando se deja de contrastar una hipótesis y se asume como principio. La hipótesis se convierte entonces en parte estructural (= incuestionable) del paradigma.
Tras la ola de investigación en torno a la sostenibilidad de los años 70, nos encontramos actualmente ante un nuevo impulso. Mientras hace 4 décadas esta ola se debió más a un esfuerzo de anticipación y planificación, la actual, mayor en magnitud y extensión, parece deberse simplemente a la fuerza que tienen los hechos al revelarse. Es interesante comprobar como aunque se advierten avances en el terreno académico, en el político la impresión es más bien la de retroceso respecto de la Cumbre de Estocolmo (1972) o de Río (1992).
En este contexto, el informe 2052 de J. Randers retoma el tema de la sostenibilidad sistémica (recursos, desigualdad, contaminación, etc.) y por lo tanto incluye el tema de la finitud de los recursos energéticos no renovables. Éstos son integrados en un modelo mundial de forma similar (aunque también con diferencias significativas) al modelo WORLD3 del informe de los “Límites del Crecimiento” – en el que Randers también participó.
Es muy interesante ver cómo, 40 años, después, los modelos siguen apuntando a resultados similares a los obtenidos por el WORLD3 de los años 70. Aunque más interesante aún quizá es constatar cómo éste modelo, opuestamente a la “creencia popular en la academia” ha reproducido muy bien la evolución de los últimos 40 años:





(Turner 2008; 2012). Figura tomada de Scientific American: http://www.scientificamerican.com/article/apocalypse-soon-has-civilization-passed-the-environmental-point-of-no-return/
El informe 2052 prevé que será la variable climática la variable crítica en las próximas décadas, es decir que una colapso sistémico sería causado por una interrelación de variables entre las cuales la primera en superar valores críticos sería la climática. Sin embargo, llama la atención cómo, en el contexto BAU que asume Randers, no considera el alcance de un pico en el GDP mundial como una variable crítica:

                                                                          (Randers 2052)
Simplemente comenta que “la economía mundial en 2050 será mucho menor que lo que la mayoría de la gente cree” (aunque es posible que en el libro le extensión dedicada a este tema sea mayor). Las principales razones de esa saturación en el nivel de actividad económica mundial son consecuencia del efecto combinado del (1) declive de la productividad (como se viene observando en las últimas décadas), y (2) de la integración de la ley de rendimientos decrecientes en el sector energético (vía incremento de la proporción de la inversión sobre el GDP, o lo que es lo mismo, de la reducción del EROEI, como se puede ver en la figura anterior). Es muy significativo que la mayoría de modelos (y especialmente aquellos que son políticamente relevantes como el WEM de la Agencia Internacional de la Energía o aquellos que participan en el proceso del IPCC) obvian aspectos como el EROEI, y al hacerlo sus modelos son incapaces de representar estos procesos.
Otro ejemplo de modelo que integra la limitación de recursos y el EROEI es el GEMBA de M. Dale (Dale 2012). De nuevo, se obtienen techos de producción no-renovable poco antes de 2050 así como una saturación en la actividad económica asociada. Esto también coincide con el BAU del informe “Límites del Crecimiento” desde 1972. Grosso modo, parece que los modelos se ponen de acuerdo.




(Dale 2012). IZQ: Proyección de potencia energética por fuentes de energía; DCHA: Nivel de capital industrial total (EJ) representado en función del capital del sector energético (EJ).
Sin embargo, estos 3 modelos no están preparados para representar los problemas a corto y medio plazo de la energía. Es decir, su modelado asume directamente que éstos no van a existir. En las propias palabras de Randers: “Por lo tanto, no preveo un shock petrolero, ni tampoco ninguna otra crisis relacionada con los recursos en el horizonte. Tan sólo veo una transición de materiales baratos a sustitutos más caros, y con suerte, que la transición se realice a un ritmo suficiente para evitar el tipo de choques que pudieran hacer descarrilar el sistema. Pero, de nuevo, esta previsión optimista es una consecuencia de la ralentización del crecimiento económico que confío que se produzca en los próximos 40 años”.
Es decir, estos modelos nos están hablando de máximos teóricos (inalcanzables por lo tanto), no de fechas más probables. Mucha literatura ha explorado las implicaciones económicas del peakoil. En particular, Gail Tverberg escribió un post en respuesta al informe de “2052” con el franco título: “Por qué no me creo la predicción para 2052 de Randers”, en el que criticaba diversos aspectos del modelado del sector energético, su insuficiente desagregación regional (que obvia particularidades locales que podrían tener implicaciones globales) o la omisión de los precios de la energía.
Pero no debemos olvidar que el modelo perfecto a corto, y largo plazo que incluya “todo” no existe ni existirá nunca por nuestra ignorancia intrínseca y las incertidumbres asociadas, y éstos se deben de usar más bien como “herramientas de orientación” en procesos político-sociales. Algo así como rudimentarios (e imprecisos) aparatos de navegación (brújula, astrolabios) en una nave: la tripulación también debe de valorar los riesgos y participar en el diseño de la ruta más segura.
Iñigo Capellán Pérez
Referencias
(D    Dale 2012) Dale, M., S. Krumdieck, and P. Bodger. “Global Energy Modelling — A Biophysical Approach (GEMBA) Part 2: Methodology.” Ecological Economics 73 (Enero 2012): 158–67. doi:10.1016/j.ecolecon.2011.10.028.
(Turner 2008) Turner, Graham M. “A Comparison of The Limits to Growth with 30 Years of Reality.” Global Environmental Change 18, no. 3 (Agosto 2008): 397–411. doi:10.1016/j.gloenvcha.2008.05.001.
(Turner 2012) Turner, Graham M. “On the Cusp of Global Collapse? Updated Comparison of The Limits to Growth with Historical Data.” GAIA  – Ecological Perspectives for Science and Society 21, no. 2 (2012): 116–24.




Cap comentari:

Publica un comentari a l'entrada